JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of the antidepressant venlafaxine on fish brain serotonin and predation behavior.

Antidepressants that enter receiving waters through final treated wastewater effluent have exhibited relatively low acute toxicity in traditional fish tests at currently measured concentrations. However, the psychotropic mode of action of these compounds warrants examination of the behavioral effects these chemicals may have on aquatic organisms. Previous research has demonstrated that exposure to the antidepressant fluoxetine causes decreased brain serotonin levels in fish and results in a decreased ability to capture prey. Another antidepressant, venlafaxine, has been found at low μg/L concentrations in final treated wastewater effluent. The objective of this study was to quantify the effects of venlafaxine on fish predation behavior and determine if this effect was correlated with changes in brain neurotransmitter concentrations. The predator prey bioassay used hybrid striped bass (Morone saxatilis x Morone chrysops) as the predator and fathead minnows (Pimephales promelas) as prey. Bass were exposed to venlafaxine (0-500 μg/L) for a period of 6 days and then allowed to recover for 6 days. During both exposure and recovery, bass were fed four minnows every third day. The time to capture the minnows was quantified and compared among treatments to determine if there was an effect on predation behavior. Brain tissue was analyzed for serotonin, norepinephrine, and dopamine, to determine the relationship between exposure concentration, brain monoamine levels, and predation behavior. Results indicated that venlafaxine exposures increased time to capture prey 1 and 2 by day 6 for the 250 and 500 μg/L treatments. Time to capture prey 3 was increased for all venlafaxine treatments by day 6. Venlafaxine caused a statistically significant decrease in brain serotonin concentrations that initially decreased in a dose dependent manner before reaching a steady state by the end of exposures for all treatments. No significant, dose-dependent changes in dopamine or norepinephrine were seen. Brain serotonin alone did not adequately explain behavioral results. Serotonin response in other tissues as well as peripheral effects may have accounted for additional behavioral responses after brain serotonin reached a depressed steady state.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app