miR-125b/Ets1 axis regulates transdifferentiation and calcification of vascular smooth muscle cells in a high-phosphate environment

Ping Wen, Hongdi Cao, Li Fang, Hong Ye, Yang Zhou, Lei Jiang, Weifang Su, Hongying Xu, Weichun He, Chunsun Dai, Junwei Yang
Experimental Cell Research 2014 April 1, 322 (2): 302-12

OBJECTIVES: Vascular calcification is highly prevalent in patients with chronic kidney disease (CKD) and contributes to increased risk of cardiovascular disease and mortality. Accumulated evidences suggested that vascular smooth muscle cells (VSMCs) to osteoblast-like cells transdifferentiation (VOT) plays a crucial role in promoting vascular calcification. MicroRNAs (miRNAs) are a novel class of small RNAs that negatively regulate gene expression via repression of the target mRNAs. In the present work, we sought to determine the role of miRNAs in VSMCs phenotypic transition and calcification induced by β-glycerophosphoric acid.

APPROACH AND RESULTS: Primary cultured rat aortic VSMCs were treated with β-glycerophosphoric acid for different periods of time. In VSMCs, after β-glycerophosphoric acid treatment, the expressions of cbf β1, osteocalcin and osteopontin were significantly increased and SM-22β expression was decreased. ALP activity was induced by β-glycerophosphoric acid in a time or dose dependent manner. Calcium deposition was detected in VSMCs incubated with calcification media; then, miR-125b expression was detected by real-time RT PCR. miR-125b expression was significantly decreased in VSMCs after incubated with β-glycerophosphoric acid. Overexpression of miR-125b could inhibit β-glycerophosphoric acid-induced osteogenic markers expression and calcification of VSMCs whereas knockdown of miR-125b promoted the phenotypic transition of VSMCs and calcification. Moreover, miR-125b targeted Ets1 and regulated its protein expression in VSMCs. Downregulating Ets1 expression by its siRNA inhibited β-glycerophosphoric acid-induced the VSMCs phenotypic transition and calcification.

CONCLUSION: Our study suggests that down-regulation of miR-125b after β-glycerophosphoric acid treatment facilitates VSMCs transdifferentiation and calcification through targeting Ets1.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"