Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Oleuropein prevents doxorubicin-induced cardiomyopathy interfering with signaling molecules and cardiomyocyte metabolism.

Oleuropein, a natural phenolic compound, prevents acute doxorubicin (DXR)-induced cardiotoxicity but there is no evidence regarding its role in chronic DXR-induced cardiomyopathy (DXR-CM). In the present study, we investigated the role of oleuropein in DXR-CM by addressing cardiac geometry and function (transthoracic echocardiography), cardiac histopathology, nitro-oxidative stress (MDA, PCs, NT), inflammatory cytokines (IL-6, Big ET-1), NO homeostasis (iNOS and eNOS expressions), kinases involved in apoptosis and metabolism (Akt, AMPK) and myocardial metabonomics. Rats were randomly divided into 6 groups: Control, OLEU-1 and OLEU-2 [oleuropein at 1000 and 2000 mg/kg in total, respectively, intraperitoneally (i.p.) for 14 days], DXR (18 mg/kg, i.p. divided into 6 equal doses for 2 weeks), DXR-OLEU-1 and DXR-OLEU-2 (both oleuropein and DXR as previously described). Impaired left ventricular contractility and inflammatory and degenerative pathology lesions were encountered only in the DXR group. The DXR group also had higher MDA, PCs, NT, IL-6 and Big ET-1 levels, higher iNOS and lower eNOS, Akt and AMPK activation compared to controls and the oleuropein-treated groups. Metabonomics depicted significant metabolite alterations in the DXR group suggesting perturbed energy metabolism and protein biosynthesis. The effectiveness of DXR in inhibiting cell proliferation is not compromised when oleuropein is present. We documented an imbalance between iNOS and eNOS expressions and a disturbed protein biosynthesis and metabolism in DXR-CM; these newly recognized pathways in DXR cardiotoxicity may help identifying novel therapeutic targets. Activation of AMPK and suppression of iNOS by oleuropein seem to prevent the structural, functional and histopathological cardiac effects of chronic DXR toxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app