JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mitogen-activated protein kinase 6 controls root growth in Arabidopsis by modulating Ca2+ -based Na+ flux in root cell under salt stress.

Little is known about the role of mitogen-activated protein kinase 6 (MPK6) in Na(+) toxicity and inhibition of root growth in Arabidopsis under NaCl stress. In this study, we found that root elongation in seedlings of the loss-of-function mutants mpk6-2 and mpk6-3 was less sensitive to NaCl or Na-glutamate, but not to KCl or mannitol, as compared with that of wild-type (WT) seedlings. The less sensitive characteristic was eliminated by adding the Ca(2+) chelator EGTA or the Ca(2+) channel inhibitor LaCl3, but not the Ca(2+) ionophore A23187. This suggested that the tolerance of mpk6 to Na(+) toxicity was Ca(2+)-dependent. We measured plasma membrane (PM) Na(+)-conducted currents (NCCs) in root cells. Increased concentrations of NaCl increased the inward NCCs while decreased the outward NCCs in WT root cells, attended by a positive shift in membrane potential. In mpk6 root cells, NaCl significantly increased outward but not inward NCCs, accompanied by a negative shift in membrane potential. That is, mpk6 decreased NaCl-induced the Na(+) accumulation by modifying PM Na(+) flux in root cells. Observations of aequorin luminescence revealed a NaCl-induced increase of cytosolic Ca(2+) in mpk6 root cells, resulting from PM Ca(2+) influx. An increase of cytosolic Ca(2+) was required to alleviate the NaCl-increased Na(+) content and Na(+)/K(+) ratio in mpk6 roots. Together, these results show that mpk6 accumulated less Na(+) in response to NaCl because of the increased cytosolic Ca(2+) level in root cells; thus, its root elongation was less inhibited than that of WT by NaCl.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app