Add like
Add dislike
Add to saved papers

Stability-Indicating RP-HPLC Method for the Simultaneous Estimation of Doxofylline and Terbutalinesulphate in Pharmaceutical Formulations.

An isocratic, stability-indicating, reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed for the quantitative determination of doxofylline and terbutaline sulphate, used for the treatment of respiratory problems. The chromatographic separation was achieved on a Zorbax-SB Phenyl 250 × 4.6mm × 5 μm column with the mobile phase consisting of a mixture of 25 mM ammonium acetate (pH 5.0) : acetonitrile (85:15 %v/v) at a flow rate of 1.0 ml/min. The eluate was monitored at 274 nm using a PDA detector. Forced degradation studies were performed on the bulk sample of doxofylline and terbutaline sulphate using acid (0.1N HCl), base (0.1N NaOH), oxidation (10% hydrogen peroxide), photolytic, and thermal degradation conditions. Good resolution was observed between the degradants and analytes. Degradation products resulting from the stress studies did not interfere with the detection of doxofylline and terbutaline sulphate, thus the assay is stability-indicating. The method has the requisite accuracy, selectivity, sensitivity, and precision for the simultaneous estimation of doxofylline and terbutaline sulphate in bulk and pharmaceutical dosage forms. The limit of quantitation and limit of detection were found to be 1.16 μg/ml and 0.38 μg/ml for doxofylline, 2.08 μg/ml and 0.62 μg/ml for terbutaline sulphate, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app