ENGLISH ABSTRACT
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

[The effect of Ca(2+)-induced opening of cyclosporine-sensitive pore on the oxygen consumption and functional state of rat liver mitochondria].

The effect of Ca(2+)-induced opening of cyclosporine-sensitive pore (mitochondrial permeability transition pore, MPTP) on the oxygen consumption and mitochondrial functional state was studied in the rat liver mitochondria. It was shown that, with the use of glutamate as oxidation substrate, in the absence of depolarization MPTP opening results in the increase of steady state respiration rate because of the activation of cyclosporine-sensitive Ca2+/H(+)-exchange and Ca2+ cycling, which was supported by the simultaneous work of MPTP and Ca(2+)-uniporter. With the aid of selective blockers, cyclosporine A and ruthenium red, it was shown that MPTP and Ca(2+)-uniporter contribute equally to the Ca(2+)-cycling and mitochondrial respiration. It was shown that bioenergetic effects of MPTP opening under steady state conditions (increase in the oxygen consumption rate under substrate oxidation without ADP, decrease in respiratory control ratio as well as the effectiveness of ATP synthesis, P/O) are close to the functional alterations, which result from the increase of endogenous proton conductance of mitochondrial membrane. Uncoupling effect of MPTP opening, by itself, had no effect on phosphorylation rate, which remains relatively stable because the fall of P/O is compensated by the activation of respiratory chain and the increase in the rate of state 3 respiration. It was concluded that under physiologically normal conditions MPTP might function as the endogenous mechanism of mild uncoupling of respiratory chain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app