Add like
Add dislike
Add to saved papers

Carbon dots based dual-emission silica nanoparticles as a ratiometric nanosensor for Cu(2+).

A simple and effective strategy for designing ratiometric fluorescent nanosensor has been described in this work. A carbon dots (CDs) based dual-emission nanosensor for Cu(2+) detection was prepared by coating CDs on the surface of Rhodamine B-doped silica nanoparticles. The fluorescent CDs were synthesized using N-(β-aminoethyl)-γ-aminopropyl methyldimethoxysilane (AEAPMS) as the main raw material, so that the residual ethylenediamine groups and methoxysilane groups on the surface of CDs can serve as the Cu(2+) recognition sites and the silylation reaction groups. The obtained nanosensor showed characteristic fluorescence emissions of Rhodamine B (red) and CDs (blue) under a single excitation wavelength. Upon binding to Cu(2+), only the fluorescence of CDs was quenched, resulting in the ratiometric fluorescence response of the dual-emission silica nanoparticles. This ratiometric nanosensor exhibited good selectivity to Cu(2+) over other substances, such as metal ions, amino acids, proteins, and vitamin C. The ratio of F467/F585 linearly decreased with the increasing of Cu(2+) concentration in the range of 0 to 3 × 10(-6) M, a detection limit as low as 35.2 nM was achieved. Additionally, this nanosensor was successfully applied for the ratiometric fluorescence imaging of Cu(2+) in cells and determination of Cu(2+) in real tap water.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app