Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Comparative phylogenetic analysis of genome-wide Mlo gene family members from Glycine max and Arabidopsis thaliana.

Powdery mildew locus O (Mlo) gene family is one of the largest seven transmembrane protein-encoding gene families. The Mlo proteins act as negative regulators of powdery mildew resistance and a loss-of-function mutation in Mlo is known to confer broad-spectrum resistance to powdery mildew. In addition, the Mlo gene family members are known to participate in various developmental and biotic and abiotic stress response-related pathways. Therefore, a genome-wide similarity search using the characterized Mlo protein sequences of Arabidopsis thaliana was carried out to identify putative Mlo genes in soybean (Glycine max) genome. This search identified 39 Mlo domain containing protein-encoding genes that were distributed on 15 of the 20 G. max chromosomes. The putative promoter regions of these Mlo genes contained response elements for different external stimuli, including different hormones and abiotic stresses. Of the 39 GmMlo proteins, 35 were rich (8.7-13.1 %) in leucine, while five were serine-rich (9.2-11.9 %). Furthermore, all the GmMlo members were localized in the plasma membrane. Phylogenetic analysis of the GmMlo and the AtMlo proteins classified them into three main clusters, and the cluster I comprised two sub-clusters. Multiple sequence alignment visualized the location of seven transmembrane domains, and a conserved CaM-binding domain. Some of the GmMlo proteins (GmMlo10, 20, 22, 23, 32, 36, 37) contained less than seven transmembrane domains. The motif analysis yielded 27 motifs; out of these, motif 2, the only motif present in all the GmMlos, was highly conserved and three amino acid residues were essentially invariant. Five of the GmMlo members were much smaller in size; presumably they originated through deletion following a gene duplication event. The presence of a large number of GmMlo members in the G. max genome may be due to its paleopolyploid nature and the large genome size as compared to that of Arabidopsis. The findings of this study may further help in characterization and isolation of individual GmMlo members.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app