JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

MicroRNA-193a-3p and -5p suppress the metastasis of human non-small-cell lung cancer by downregulating the ERBB4/PIK3R3/mTOR/S6K2 signaling pathway.

Oncogene 2015 January 23
The metastatic cascade is a complex and multistep process with many potential barriers. Recent evidence has shown that microRNAs (miRNAs) are involved in carcinogenesis and tumor progression in non-small-cell lung cancer (NSCLC). In this study, by comparing the miRNA expression profiles of SPC-A-1sci (high metastatic) and SPC-A-1 (weakly metastatic) cells, we demonstrated that the downregulation and function of miR-193a-3p and miR-193a-5p in NSCLC metastasis and the expression of these miRNAs was suppressed in NSCLC compared with corresponding non-tumorous tissues. Decreased miR-193a-3p/5p expression was significantly associated with tumor node metastasis (TNM) and lymph node metastasis. Furthermore, functional assays showed that the overexpression of miR-193a-3p/5p inhibited NSCLC cell migration, invasion and epithelial-mesenchymal transition (EMT) in vitro and lung metastasis formation in vivo. In addition, we discovered that ERBB4 and S6K2 were the direct targets of miR-193a-3p and that PIK3R3 and mTOR were the direct targets of miR-193a-5p in NSCLC. We also observed that miR-193a-3p/5p could inactivate the AKT/mTOR signaling pathway. Thus, miR-193a-3p/5p functions as a tumor suppressor and has an important role in NSCLC metastasis through ERBB signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app