Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces

Chuan Shi, Heine A Hansen, Adam C Lausche, Jens K Nørskov
Physical Chemistry Chemical Physics: PCCP 2014 March 14, 16 (10): 4720-7
We present a theoretical analysis of trends in overpotentials for electrocatalytic CO2 reduction based on density functional theory calculations. The analysis is based on understanding variations in the free energy of intermediates and mapping out the potential at which different elementary steps are exergonic as a measure of the catalytic activity. We study different surface structures and introduce a simple model for including the effect of adsorbate-adsorbate interactions. We find that high coverages of CO under typical reaction conditions for the more reactive transition metals affect the catalytic activity towards the CO2 reduction reaction, but the ordering of metal activities is not changed. For the hydrogen evolution reaction, a high CO coverage shifts the maximum activity towards more reactive metals than Pt.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"