Add like
Add dislike
Add to saved papers

Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces.

We present a theoretical analysis of trends in overpotentials for electrocatalytic CO2 reduction based on density functional theory calculations. The analysis is based on understanding variations in the free energy of intermediates and mapping out the potential at which different elementary steps are exergonic as a measure of the catalytic activity. We study different surface structures and introduce a simple model for including the effect of adsorbate-adsorbate interactions. We find that high coverages of CO under typical reaction conditions for the more reactive transition metals affect the catalytic activity towards the CO2 reduction reaction, but the ordering of metal activities is not changed. For the hydrogen evolution reaction, a high CO coverage shifts the maximum activity towards more reactive metals than Pt.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app