JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Neocartilage formation from mesenchymal stem cells grown in type II collagen-hyaluronan composite scaffolds.

Three-dimensional (3D) collagen type II-hyaluronan (HA) composite scaffolds (CII-HA) which mimics the extracellular environment of natural cartilage were fabricated in this study. Rheological measurements demonstrated that the incorporation of HA increased the compression modulus of the scaffolds. An initial in vitro evaluation showed that scaffolds seeded with porcine chondrocytes formed cartilaginous-like tissue after 8 weeks, and HA functioned to promote the growth of chondrocytes into scaffolds. Placenta-derived multipotent cells (PDMC) and gingival fibroblasts (GF) were seeded on tissue culture polystyrene (TCPS), CII-HA films, and small intestinal submucosa (SIS) sheets for comparing their chondrogenesis differentiation potentials with those of adipose-derived adult stem cells (ADAS) and bone marrow-derived mesenchymal stem cells (BMSC). Among different cells, PDMC showed the greatest chondrogenic differentiation potential on both CII-HA films and SIS sheets upon TGF-β3 induction, followed by GF. This was evidenced by the up-regulation of chondrogenic genes (Sox9, aggrecan, and collagen type II), which was not observed for cells grown on TCPS. This finding suggested the essential role of substrate materials in the chondrogenic differentiation of PDMC and GF. Neocartilage formation was more obvious in both PDMC and GF cells plated on CII-HA composite scaffolds vs. 8-layer SIS at 28 days in vitro. Finally, implantation of PDMC/CII-HA constructs into NOD-SCID mice confirmed the formation of tissue-engineered cartilage in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app