Journal Article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Size of kinematic error affects retention of locomotor adaptation in human spinal cord injury.

Studies in arm motor adaptation suggest that introducing small errors during the adaptation period may lead to a longer retention of the aftereffect than introducing large errors. However, it is unclear whether this notion can be generalized to locomotor adaptation in patients with incomplete spinal cord injury (SCI). We hypothesized that a smaller error size may lead to longer retention of the aftereffect in patients with SCI. We recruited 12 subjects with incomplete SCI for this study. They were instructed to walk on a treadmill while light-, medium-, and heavy-resistance loads were applied to the right ankle to perturb leg swing. Each of the three resistance-load conditions were specific to the subject and determined by each subject's maximum voluntary contraction of the hip flexors. We observed that subjects tended to make larger errors when the resistance-load condition was greater. Following resistance load release, subjects showed an aftereffect consisting of an increase in stride length. Further, the aftereffect was retained longer in the medium-resistance load condition than in the heavy- and light-resistance load conditions. This finding suggests that a patient-specific resistance load may be needed to facilitate retention of locomotor adaptation in patients with incomplete SCI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app