JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Wolfberries potentiate mitophagy and enhance mitochondrial biogenesis leading to prevention of hepatic steatosis in obese mice: the role of AMP-activated protein kinase α2 subunit.

SCOPE: The aim of this study is to investigate whether AMP-activated protein kinase α2 (AMPKα2) is essential for wolfberry's protective effects on mitochondrial dysfunction and subsequent hepatic steatosis in mice.

METHODS AND RESULTS: Six-week-old male AMPKα2 knockout mice and genetic background C57BL/6J (B6) mice were fed a control, high-fat diet (HD, 45% (kilocalorie) fat), and/or HD with 5% (kilocalarie) wolfberry diets for 18 wk. At termination, blood and liver tissues were sampled for analysis by ELISA, HPLC, microscopy, real-time PCR, and Western blot. HD lowered hepatic lutein and zeaxanthin contents, inhibited protein expression of β,β-carotene 9',10'-oxygenase 2 (BCO2) and heat shock protein 60 in mitochondria, increased reactive oxygen species level, and suppressed mitophagy and mitochondrial biogenesis as determined by accumulation of p62, inhibited phosphorylation of Unc-51-like kinase 1 on Ser555, and declined expression of peroxisome proliferator-activated receptor γ coactivator 1 α, resulting in hepatic steatosis in B6 and knockout mice. Dietary wolfberry elevated the xanthophyll concentrations and enhanced expression of BCO2 and heat shock protein 60, attenuated mitochondrial oxidative stress, activated AMPKα2, potentiated mitophagy and mitochondrial biogenesis, and enhanced lipid oxidation and secretion in the liver of B6 mice.

CONCLUSION: Dietary wolfberry selectively activated AMPKα2, which resulted in enhanced mitochondrial biogenesis and potentiated mitophagy, leading to the prevention of hepatic steatosis in obese mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app