JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

[Construction of RGD10-NGR9 dual-targeting superparamagnetic iron oxide and its magnetic resonance imaging features in nude mice].

OBJECTIVE: To construct angiogenesis-specific RGD10-NGR9 dual-targeting superparamagnetic iron oxide nanoparticles, and to evaluate its magnetic resonamce imaging (MRI) features in nude mice and potential diagnostic value in tumor MRI.

METHODS: Dual-targeting peptides RGD10-NGR9 were designed and synthesized. Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles were synthesized by chemical co-precipitation method and the surface was modified to be hydrophilic by coating with dextran. The dual-targeting peptides RGD10-NGR9 were conjugated to USPIO. Cell binding affinity and up-taking ability of the dual-targeting USPIO nanoparticles to integrin ανβ3-APN positive cells were subsequently tested by Prussian blue staining and phenanthroline colorimetry in vitro. The RGD10-NGR9 conjugated with USPIO was injected intravenously into xenograft mice, which were scanned by MRI at predetermined time points. The MRI and contrast-to-noise ratio (CNR) values were calculated to evaluate the ability of dual-targeting USPIO as a potential contrast agent in nude mice.

RESULTS: P-CLN-Dextran-USPIO nanoparticles with stable physical properties were successfully constructed. The average diameter of Fe3O4 nanoparticles was 8-10 nm, that of Dextran-USPIO was about 20 nm and P-CLN-Dextran-USPIO had an average diameter about 30 nm. The in vitro studies showed a better specificity of dual-targeting USPIO nanoparticles on proliferating human umbilical vein endothelia cells (HUVEC). In vivo, RGD10-NGR9-USPIO showed a significantly reduced contrast in signal intensity and 2.83-times increased the CNR in the tumor MRI in xenograft mice.

CONCLUSION: This novel synthesized RGD10-NGR9 dual-targeting USPIO is with better specific affinity in vitro and in vivo, and might be used as a molecular contrast agent for tumor angiogenesis MRI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app