Add like
Add dislike
Add to saved papers

Can we unmask features of spasticity during gait in children with cerebral palsy by increasing their walking velocity?

Gait & Posture 2014 March
BACKGROUND AND AIM: Spasticity is a velocity dependent feature present in most patients with cerebral palsy (CP). It is commonly measured in a passive condition. The aim of this study was to highlight markers of spasticity of gastrocnemius and hamstring muscles during gait by comparing the effect of increased walking velocity of CP and typical developing (TD) children.

METHODS: 53 children with spastic CP and 17 TD children were instructed to walk at self-selected speed, faster and as fast as possible without running. Kinematics, kinetics and electromyography (EMG) were collected and muscle length and muscle lengthening velocity (MLV) were calculated. To compare the data of both groups, a linear regression model was created which resulted in two non-dimensional gait velocities. A difference score (DS) was calculated between the high and low velocity values for both groups.

RESULTS: 103 gait parameters were analyzed of which 16 had a statistically significant DS between TD and CP groups. The spastic gastrocnemius muscle presented at high velocity with a higher ankle angular velocity, plantar flexion moment, power absorption and increased EMG signal during loading response. The spastic hamstrings demonstrated at high velocity a delayed maximum knee extension moment at mid-stance and increasing hip extension moment and hip power generation. The hamstrings also presented with a lower MLV during swing phase.

CONCLUSIONS: A limited number of gait parameters differ between CP and TD children when increasing walking velocity, giving indirect insight on the effect of spasticity on gait.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app