JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Tuning the cytotoxic properties of new ruthenium(III) and ruthenium(II) complexes with a modified bis(arylimino)pyridine Schiff base ligand using bidentate pyridine-based ligands.

Synthesis, spectroscopy, characterization, structures, and cytotoxicity studies of 2,6-bis(2,6-diisopropylphenyliminomethyl)pyridine (LLL) ruthenium compounds are described. The starting compound [RuCl3(LLL)] has been fully characterized using IR spectroscopy, UV-vis spectroscopy, electrospray ionization mass spectrometry, and NMR spectroscopy. In addition, the crystal structure of the ligand LLL has been determined using single-crystal X-ray diffraction. With the ruthenium(III) trichloride compound as starting material, a new family of Ru(II) complexes with a number of neutral and charged bidentate co-ligands have been synthesized and used for characterization and cytotoxicity studies. The synthesis of the corresponding [Ru(II)LLL(LL)Cl](+/0) complexes with co-ligands- LL is 1,10-phenanthroline, 2,2'-bipyridyl, 2-(phenylazo)pyridine, 2-(phenylazo)-3-methylpyridine, 2-(tolylazo)pyridine, or the anionic 2-picolinate-is reported. Analytical, spectroscopic (IR spectroscopy, UV-vis spectroscopy, (1)H NMR spectroscopy, and electrospray ionization mass spectrometry), and structural characterization of the new compounds is described. Crystal structure analyses of two Ru(II) compounds show a slightly distorted octahedral Ru(II) geometry with tridentate LLL coordinated in a planar meridional fashion, and the chelating co-ligand (LL) and a chloride ion complete the octahedron. The co-ligand plays a significant role in modulating the physicochemical and cytotoxic properties of these new ruthenium complexes. The in vitro cytotoxicity of these new Ru(II) complexes (half-maximal inhibitory concentration, IC50, of 0.5-1.5 μM), in comparison with the parent Ru(III) compound (half-maximal inhibitory concentration of 3.9-4.3 μM) is higher for several of the human cancer cell lines tested. The cytotoxic activity of some of the new ruthenium compounds is even higher than that of cisplatin in the same cancer cell lines. The cytotoxicity of these new anticancer compounds is discussed in the light of structure-based activity relationships, and a possible mechanism of action is suggested.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app