Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Enhanced cytotoxic effect of radiation and temozolomide in malignant glioma cells: targeting PI3K-AKT-mTOR signaling, HSP90 and histone deacetylases.

BMC Cancer 2014 January 14
BACKGROUND: Despite aggressive treatment with radiation therapy and concurrent adjuvant temozolomide (TMZ), glioblastoma multiform (GBM) still has a dismal prognosis. We aimed to identify strategies to improve the therapeutic outcome of combined radiotherapy and TMZ in GBM by targeting pro-survival signaling from the epidermal growth factor receptor (EGFR).

METHODS: Glioma cell lines U251, T98G were used. Colony formation, DNA damage repair, mode of cell death, invasion, migration and vasculogenic mimicry as well as protein expression were determined.

RESULTS: U251 cells showing a low level of methyl guanine transferase (MGMT) were highly responsive to the radiosensitizing effect of TMZ compared to T98G cells having a high level of MGMT. Treatment with a dual inhibitor of Class I PI3K/mTOR, PI103; a HSP90 inhibitor, 17-DMAG; or a HDAC inhibitor, LBH589, further increased the cytotoxic effect of radiation therapy plus TMZ in U251 cells than in T98G cells. However, treatment with a mTOR inhibitor, rapamycin, did not discernibly potentiate the radiosensitizing effect of TMZ in either cell line. The mechanism of enhanced radiosensitizing effects of TMZ was multifactorial, involving impaired DNA damage repair, induction of autophagy or apoptosis, and reversion of EMT (epithelial-mesenchymal transition).

CONCLUSIONS: Our results suggest possible strategies for counteracting the pro-survival signaling from EGFR to improve the therapeutic outcome of combined radiotherapy and TMZ for high-grade gliomas.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app