JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Apoptotic pathway induced by diallyl trisulfide in pancreatic cancer cells.

AIM: To investigate the effects of diallyl trisulfide (DATS), a garlic-derived organosulfur compound, in pancreatic cancer cells.

METHODS: Human pancreatic cancer cells with wild-type p53 gene (Capan-2) and normal pancreatic epithelial cells (H6C7) were cultured in RPMI1640. DATS was prepared at a concentration of 100 μmol/L. Cell viability was determined via the methyl thiazolyl tetrazolium assay. Apoptotic cells were detected by TUNEL assay. Cell cycle analysis was performed using flow cytometry. Protein expression was determined by Western blot. Bax and Bcl-2 expression was detected by immunofluorescence. Apoptosis genes and cell cycle were assessed by quantitative real-time polymerase chain reaction.

RESULTS: DATS suppressed the viability of cultured human pancreatic cancer cells (Capan-2) by increasing the proportion of cells in the G2/M phase and induced apoptotic cell death. Western blot analysis indicated that DATS enhanced the expression of Fas, p21, p53 and cyclin B1, but downregulated the expression of Akt, cyclin D1, MDM2 and Bcl-2. DATS induced cell cycle inhibition which was correlated with elevated levels of cyclin B1 and p21, and reduced levels of cyclin D1 in Capan-2 cells and H6C7 cells. DATS-induced apoptosis was markedly elevated in Capan-2 cells compared with H6C7 cells, and this was correlated with elevated levels of cyclin B1 and p53, and reduced levels of Bcl-2. DATS-induced apoptosis was correlated with down-regulation of Bcl-2, Akt and cyclin D1 protein levels, and up-regulation of Bax, Fas, p53 and cyclin B protein levels in Capan-2 cells.

CONCLUSION: DATS induces apoptosis of pancreatic cancer cells (Capan-2) and non-tumorigenic pancreatic ductal epithelial cells (H6C7).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app