JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effect of PAC dosage in a pilot-scale PAC-MBR treating micro-polluted surface water.

Bioresource Technology 2014 Februrary
To address the water scarcity issue and advance the traditional drinking water treatment technique, a powdered activated carbon-amended membrane bioreactor (PAC-MBR) is proposed for micro-polluted surface water treatment. A pilot-scale study was carried out by initially dosing different amounts of PAC into the MBR. Comparative results showed that 2g/L performed the best among 0, 1, 2 and 3g/L PAC-MBR regarding organic matter and ammonia removal as well as membrane flux sustainability. 1g/L PAC-MBR exhibited a marginal improvement in pollutant removal compared to the non-PAC system. The accumulation of organic matter in the bulk mixture of 3g/L PAC-MBR led to poorer organic removal and severer membrane fouling. Molecular weight distribution of the bulk liquid in 2g/L PAC-MBR revealed the synergistic effects of PAC adsorption/biodegradation and membrane rejection on organic matter removal. Additionally, a lower amount of soluble extracellular polymer substances in the bulk can be secured in 21 days operation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app