JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Translocator protein ligand-PLGA conjugated nanoparticles for 5-fluorouracil delivery to glioma cancer cells.

Translocator protein 18 kDa (TSPO) is a promising target for molecular imaging and for targeted drug delivery to tumors overexpressing TSPO. In our previous work, new macromolecular conjugates with a high affinity and selectivity for TSPO were prepared by conjugating the biodegradable poly(d,l-lactic-co-glycolic acid) (PLGA) polymer with two potent and selective TSPO ligands, namely, compounds 1 and 2. Based on this, nanoparticle delivery systems (NPs), employing TSPO ligand-PLGA conjugated (PLGA-TSPO) polymers, were prepared. Furthermore, to evaluate the ability of the new NPs to be used as a drug delivery systems for anticancer therapy, PLGA-TSPO NPs were loaded with 5-fluorouracil (5-FU), chosen as a model hydrophilic anticancer drug. The main goal of this work was to investigate the synergistic potential of using NP conjugates PLGA-TSPO, TSPO ligands being pro-apoptotic agents, to simultaneously deliver a cytotoxic anticancer drug. To better highlight the occurrence of synergistic effects, dual drug loaded PLGA NPs (PLGA NPs/5-FU/1) and dual drug loaded PLGA-TSPO NPs (PLGA-TSPO NPs/5-FU/1), with 5-FU and TSPO ligand 1 physically incorporated together, were also prepared and characterized. The particle size and size distribution, surface morphology, and drug encapsulation efficiency, as well as the drug release kinetics, were investigated. In vitro cytotoxicity studies were carried out on C6 glioma cells overexpressing TSPO, and to evaluate the potential uptake of these nanoparticulate systems, the internalization of fluorescent labeled PLGA-TSPO NPs (FITC-PLGA-TSPO NPs) was also investigated by fluorescence microscopy. Results demonstrated that PLGA-TSPO NPs/5-FU and dual drug loaded PLGA NPs/5-FU/1 and PLGA-TSPO NPs/5-FU/1 could significantly enhance toxicity against human cancer cells due to the synergistic effect of the TSPO ligand 1 with the anticancer drug 5-FU.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app