[Experimental study on tissue engineered cartilage complex three-dimensional nano-scaffold with collagen type II and hyaluronic acid in vitro]

Zelong Yang, Zhu Chen, Kang Liu, Yiguang Bai, Ting Jiang, Daxiong Feng, Gang Feng
Chinese Journal of Reparative and Reconstructive Surgery 2013, 27 (10): 1240-5

OBJECTIVE: To explore the possibility of constructing tissue engineered cartilage complex three-dimensional nano-scaffold with collagen type II and hyaluronic acid (HA) by electrospinning.

METHODS: The three-dimensional porous nano-scaffolds were prepared by electrospinning techniques with collagen type II and HA (8 : 1, W : W), which was dissolved in mixed solvent of 3-trifluoroethanol and water (1 : 1, V : V). The morphology were observed by light microscope and scanning electron microscope (SEM). And the porosity, water absorption rate, contact angle, and degradation rate were detected. Chondrocytes were harvested from 1-week-old Japanese white rabbit, which was disgested by 0.25% trypsin 30 minutes and 1% collagenase overlight. The passage 2 chondrocytes were seeded on the nano-scaffold. The cell adhesion and proliferation were evaluated by cell counting kit 8 (CCK-8). The cell-scaffold composites were cultured for 2 weeks in vitro, and the biological morphology and extracelluar matrix (ECM) secretion were observed by histological analysis.

RESULTS: The optimal electrospinning condition of nano-scaffold was 10% electrospinning solution concentration, 10 cm receiver distance, 5 mL/h spinning injection speed. The scaffold had uniform diameter and good porosity through the light microscope and SEM. The diameter was 300-600 nm, and the porosity was 89.5% +/- 25.0%. The contact angle was (35.6 +/- 3.4) degrees, and the water absorption was 1 120% +/- 34% at 24 hours, which indicated excellent hydrophilicity. The degradation rate was 42.24% +/- 1.51% at 48 days. CCK-8 results showed that the adhesive rate of cells with scaffold was 169.14% +/- 11.26% at 12 hours, and the cell survival rate was 126.03% +/- 4.54% at 7 days. The histological and immunohistochemical staining results showed that the chondrocytes could grow well on the scaffold and secreted ECM. And the similar cartilage lacuma structure could be found at 2 weeks after co-culture, which suggested that hyaline cartilage formed.

CONCLUSION: The collage type II and HA complex three-dimensional nano-scaffold has good physicochemical properties and excellent biocompatibility, so it can be used as a tissue engineered cartilage

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"