JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A non-adiabatic dynamics study of octatetraene: the radiationless conversion from S2 to S1.

Simulation of the excited state dynamics of all-trans-1,3,5,7-octatetraene has been performed to investigate the ultrafast radiationless S2 → S1 internal conversion process. Multireference configuration interaction with single excitation method has been employed to optimize the equilibrium structure of the excited states, as well as the S2/S1 conical intersection, and to investigate the non-adiabatic molecular dynamics of the S2/S1 state transition. At the conical intersection, the molecule is found to be distorted from the original planar trans structure to a nearly perpendicular conformation around C3-C4 bond, with the torsion angle being about 107°. Such structural change can result in mutual approaching of states S2 and S1 in energy, and drastically increase the nonadiabatic coupling between the two states by destroying the inter-state symmetry prohibition in the electronic wavefunctions. Surface-hopping molecular dynamics simulations are performed to describe the non-adiabatic process. Upon the Franck-Condon excitation to the S2 state, the molecule quickly twists its C3-C4 bond and approaches the conical intersection region, where it can undergo efficient internal conversion to S1. The decay time constant (τ) of S2 state is estimated to be around 251 fs by fitting the occupation number of average fraction of trajectories using an exponential damping function. This value is reasonably consistent with previous experimental measurements of around 300-400 fs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app