JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A model of implant-associated infection in the tibial metaphysis of rats.

OBJECTIVE: Implant-associated infections remain serious complications in orthopaedic and trauma surgery. A main scientific focus has thus been drawn to the development of anti-infective implant coatings. Animal models of implant-associated infections are considered helpful in the in vivo testing of new anti-infective implant coatings. The aim of the present study was to evaluate a novel animal model for generation of implant-associated infections in the tibial metaphysis of rats.

MATERIALS AND METHODS: A custom-made conical implant made of Ti6Al4V was inserted bilaterally at the medial proximal tibia of 26 female Sprague-Dawley rats. Staphylococcus aureus in amounts spanning four orders of magnitude and each suspended in 15  μ l phosphate buffered saline (PBS) was inoculated into the inner cavity of the implant after the implantation into the defined position. Controls were treated accordingly with PBS alone. Animals were then followed for six weeks until sacrifice. Implant-associated infection was evaluated by microbiological investigation using swabs and determination of viable bacteria in the bone around the implant and the biofilm on the implants after sonification.

RESULTS: Irrespective of the initial inoculum, all animals in the various groups harbored viable bacteria in the intraoperative swabs as well as the sonication fluid of the implant and the bone samples. No correlation could be established between initially inoculated CFU and population sizes on implant surfaces at sacrifice. However, a significantly higher viable count was observed from peri-implant bone samples for animals inoculated with 10(6) CFU. Macroscopic signs of animal infection (pus and abscess formation) were only observed for implants inoculated with at least 10(5) CFU S. aureus.

DISCUSSION/CONCLUSION: The results demonstrate the feasibility of this novel animal model to induce an implant-associated infection in the metaphysis of rats, even with comparatively low bacterial inocula. The specific design of the implant allows an application of bacteria in reproducible numbers at well-defined contact sites to the animal bone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app