JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Knockdown of Nrf2 suppresses glioblastoma angiogenesis by inhibiting hypoxia-induced activation of HIF-1α.

Concerns were increasingly raised that several types of cancers overexpressed the nuclear factor erythroid 2-related factor 2 (Nrf2), which contributed strikingly to cancer biological capabilities and chemoresistance. However, the role of Nrf2 in the tumor vascular biology had yet to be mechanistically determined. Here, we investigated the involvement of Nrf2 in glioblastoma (GB) angiogenesis in hypoxia. First, we detected the overexpression of Nrf2 and correlated its protein level with microvessel density (MVD) in human GB tissues. Then, we established the stable RNAi-mediated Nrf2-knockdown cells and mimicked hypoxic condition in vitro. The knockdown of Nrf2 inhibited cell proliferation in vitro and suppressed tumor growth in mouse xenografts with a concomitant reduction in VEGF expression and MVD. Similar antiangiogenic effects were documented in endothelial tube formation assays. The downregulation of Nrf2 in glioma cells led to much lower accumulation of HIF-1α protein and limited expression of VEGF and other HIF-1α target genes in mimicking hypoxia. Mechanistic investigations suggested that HIF-1α degradation during hypoxia could be attributed to reduced mitochondrial O2 consumption in Nrf2-inhibited cells. It can be concluded that Nrf2, with its capacity for affecting the protein level of HIF-1α expression, has good reasons to be considered as a critical transcription factor for controlling glioma angiogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app