JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hyperoxia exposure impairs nephrogenesis in the neonatal rat: role of HIF-1α.

Preterm neonates are exposed at birth to high oxygen concentrations relative to the intrauterine environment. We have previously shown in a rat model that a hyperoxic insult results in a reduced nephron number in adulthood. Therefore, the aim of this study was to determine the effects of transient neonatal hyperoxia exposure on nephrogenesis. Sprague-Dawley rat pups were raised in 80% O2 or room air from P3 to P10. Pups (n = 12/group, 6 males and 6 females) were sacrificed at P5 (during active nephrogenesis) and at P10 (after the completion of nephrogenesis). Hyperoxia exposure resulted in a significant reduction in both nephrogenic zone width and glomerular diameter at P5, and a significantly increased apoptotic cell count; however, nephron number at P10 was not affected. HIF-1α expression in the developing kidney was significantly reduced following hyperoxia exposure. Systemic administration of the HIF-1α stabilizer dimethyloxalylglycine (DMOG) resulted in enhanced expression of HIF-1α and improved nephrogenesis: kidneys from hyperoxia-exposed pups treated with DMOG exhibited a nephrogenic zone width and glomerular diameter similar to room-air controls. These findings demonstrate that neonatal hyperoxia exposure results in impaired nephrogenesis, which may be at least in part HIF-1α-mediated. Although nephron number was not significantly reduced at the completion of nephrogenesis, early indicators of maldevelopment suggest the potential for accelerated nephron loss in adulthood. Overall, this study supports the premise that prematurely born neonates exposed to high oxygen levels after birth are vulnerable to impaired renal development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app