JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Gold nanorods with phase-changing polymer corona for remotely near-infrared-triggered drug release.

Herein, we report a new drug-delivery system (DDS) that is comprised of a near-infrared (NIR)-light-sensitive gold-nanorod (GNR) core and a phase-changing poly(ε-caprolactone)-b-poly(ethylene glycol) polymer corona (GNR@PCL-b-PEG). The underlying mechanism of the drug-loading and triggered-release behaviors involves the entrapment of drug payloads among the PCL crystallites and a heat-induced phase change, respectively. A low premature release of the pre-loaded doxorubicin was observed in PBS buffer (pH 7.4) at 37 °C (<10% of the entire payload after 48 h). However, release could be activated within 30 min by conventional heating at 50 °C, above the Tm of the crystalline PCL domain (43.5 °C), with about 60% release over the subsequent 42 h at 37 °C. The NIR-induced heating of an aqueous suspension of GNR@PCL-b-PEG under NIR irradiation (802 nm) was investigated in terms of the irradiation period, power, and concentration-dependent heating behavior, as well as the NIR-induced shape-transformation of the GNR cores. Remotely NIR-triggered release was also explored upon NIR irradiation for 30 min and about 70% release was achieved in the following 42 h at 37 °C, with a mild warming (<4 °C) of the surroundings. The cytotoxicity of GNR@PCL-b-PEG against the mouse fibroblastic-like L929 cell-line was assessed by MTS assay and good compatibility was confirmed with a cell viability of over 90% after incubation for 72 h. The cellular uptake of GNR@PCL-b-PEG by melanoma MEL-5 cells was also confirmed, with an averaged uptake of 1250(±110) particles cell(-1) after incubation for 12 h (50 μg mL(-1)). This GNR@PCL-b-PEG DDS is aimed at addressing the different requirements for therapeutic treatments and is envisaged to provide new insights into DDS targeting for remotely triggered release by NIR activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app