JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Convex gradient optimization for increased spatiotemporal resolution and improved accuracy in phase contrast MRI.

PURPOSE: To evaluate convex gradient optimization (CVX) for increased spatiotemporal resolution and improved accuracy for phase-contrast MRI (PC-MRI).

METHODS: A conventional flow-compensated and flow-encoded (FCFE) PC-MRI sequence was compared with a CVX PC-MRI sequence using numerical simulations, flow phantom experiments, and in vivo experiments. Flow measurements within the ascending aorta, main pulmonary artery, and right/left pulmonary arteries of normal volunteers (N = 10) were acquired at 3T and analyzed using a conventional FCFE sequence and a CVX sequence with either higher spatial resolution or higher temporal resolution. All sequences mitigated chemical shift-induced phase errors and used equivalent breath-hold durations.

RESULTS: Chemical shift-optimized PC-MRI has increased sequence efficiency when using CVX, which can provide either higher spatial or higher temporal resolution compared with conventional FCFE PC-MRI. Numerical simulations, flow phantom experiments, and in vivo experiments indicate that CVX measurements of total flow and peak velocity are increased and more accurate when compared with FCFE.

CONCLUSION: CVX PC-MRI increases sequence efficiency while reducing chemical shift-induced phase errors. This can be used to provide either higher spatial or higher temporal resolution than conventional chemical shift-mitigated PC-MRI methods to provide more accurate measurements of blood flow and peak velocity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app