Clinical Trial
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Modulation of short- and long-interval intracortical inhibition with increasing motor evoked potential amplitude in a human hand muscle.

OBJECTIVE: The aim of the current study was to investigate the effect of increasing test motor evoked potential (MEP) amplitude on short- (SICI) and long-interval intracortical inhibition (LICI) at rest and during activation of the first dorsal interosseous (FDI) muscle.

METHODS: In 22 young subjects, a conditioning-test transcranial magnetic stimulation (TMS) paradigm was used to assess SICI and LICI at 5 different test TMS intensities (110-150% motor threshold) in resting and active FDI. In 9 additional subjects, SICI and LICI data were quantified when the test MEP amplitude represented specific proportions of the maximal compound muscle action potential (Mmax) in each subject.

RESULTS: Test TMS intensity influenced SICI and LICI in rest and active FDI muscle. The normalised test MEP amplitude (%Mmax) did not influence SICI at rest, whereas there was a decrease in LICI at rest and an increase in SICI in active FDI with an increased normalised test MEP amplitude (%Mmax).

CONCLUSIONS: Our results demonstrate differential effects of normalised test MEP amplitude (%Mmax) on SICI and LICI in resting and active FDI muscle.

SIGNIFICANCE: Estimation of SICI and LICI under some circumstances may be influenced by the normalised test MEP amplitude in subject populations with different Mmax characteristics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app