JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hyperphosphorylation of tau protein in hippocampus of central insulin-resistant rats is associated with cognitive impairment.

BACKGROUND: Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Peripheral insulin resistance increases the risk for memory impairment and the development of AD.

OBJECTIVE: This study aims to assess changes in cognitive functions and the level of hyperphosphorylated tau proteins in central insulin-resistant rats.

METHODS: An in vivo central insulin-resistant (CIR) animal model was generated through intracerebroventricular injection of streptozotocin (STZ) into insulin-resistant (IR) rats that were induced by feeding a high-glucose/-protein/-fat diet. The Morris water maze test was used to assess changes in cognitive functions, pathological changes in the cornu ammonis 1 (CA1) region of the hippocampus were detected by immunohistochemistry, and the phosphorylation levels of tau proteins at specific sites were determined by Western blot analysis.

RESULTS: The escape latency time in the Morris water maze test was significantly prolonged; the number of phosphorylated tau proteins in the CA1 region of the hippocampus was significantly increased; and the phosphorylation levels of tau proteins at Ser199, Thr205, Thr212, Thr217 and Ser396 were significantly elevated in the CIR group compared with the IR and control groups.

CONCLUSION: This study provides direct evidence that CIR plays an important role in AD pathogenesis by facilitating tau hyperphosphorylation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app