Add like
Add dislike
Add to saved papers

Inhibition of PKR protects against tunicamycin-induced apoptosis in neuroblastoma cells.

Gene 2014 Februrary 16
Endoplasmic reticulum (ER) dysfunction is thought to play a significant role in several neurological disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis, cerebral ischemia, and the prion diseases. ER dysfunction can be mimicked by cellular stress signals such as disruption of calcium homeostasis, inhibition of protein glycosylation, and reduction of disulfide bonds, which results in accumulation of misfolded proteins in the ER and leads to cell death by apoptosis. Tunicamycin, which is an inhibitor of protein glycosylation, induces ER stress and apoptosis. In this study, we examined the involvement of double stranded (ds) RNA-activated protein kinase PKR in tunicamycin-induced apoptosis. We used overexpression of the trans-dominant negative, catalytically inactive mutant K296R to inhibit PKR activity in neuroblastoma cells. We demonstrate that inhibition of PKR activation in response to tunicamycin protects neuronal cells from undergoing apoptosis. Furthermore, K296R overexpressing cells show defective PKR activation, delayed eIF2α phosphorylation, dramatically delayed ATF4 expression. In addition, both caspase-3 activation and C/EBP homologous protein (CHOP, also known as GADD153) induction, which are markers of apoptotic cells, are absent from K296R overexpression cells in response to tunicamycin. These results establish that PKR activation plays a major regulatory role in induction of apoptosis in response to ER stress and indicates the potential of PKR as possible target for neuroprotective therapeutics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app