JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Bioinhibitory effect of hydrogenotrophic bacteria on nitrate reduction by nanoscale zero-valent iron.

Chemosphere 2014 May
Hydrogenotrophic bacteria (HTB) were introduced into a nitrate removal system, which used nanoscale zero-valent iron (nZVI) as reductant, to investigate its bioinhibitory effect. Based on the results, it was noted that addition of HTB culture (10-50 mL) led to 58.9-91.4% decrease in the first observed rate constant (kobs1), which represented the nitrate removal rate by nZVI, and a reduction in the generated poisonous by-products from 94.9% to 38.5%. In other words, HTB had a significant inhibitory effect on nitrate reduction by nZVI. However, the pathway of this bioinhibition only prevented the occurrence of chemical reduction, but not competition for nitrate. Furthermore, FeOOH coating was observed on the surface of nZVI, instead of Fe3O4 or Fe2O3, which could prevent electron transmission from nZVI to nitrate. Considering that FeOOH was the product of iron corrosion, the result indicated that HTB could inhibit chemical reduction by enhancing the reaction between nZVI and water.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app