Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Controlled seeding of laser deposited Ta:TiO2 nanobrushes and their performance as photoanode for dye sensitized solar cells.

Hexagonal patterned indium tin oxide (ITO) with a height of 1.5 μm was fabricated on fluorinated SnO2 (FTO) substrate via nanoimprint lithography and pulsed laser deposition (PLD). Tantalum doped TiO2 was deposited on the patterned substrate by PLD. The film of Ta:TiO2 grew vertically and separately on the patterned ITO and formed a brush-like structure. Dye-sensitized solar cells with the Ta:TiO2 film deposited on the patterned substrate as well as flat FTO substrate for comparison were fabricated and tested. The device with the patterned substrate showed a 25% increase in short circuit current (Jsc) compared to the one with flat FTO substrate. Optical and photoelectrochemical characterization techniques were performed to investigate the improvement. The increase of Jsc was attributed to the enhancements of light absorption in the 600-750 nm range and collection of excited electrons by the brush-like structure and the patterned ITO, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app