JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Addressing genetic tumor heterogeneity through computationally predictive combination therapy.

Cancer Discovery 2014 Februrary
UNLABELLED: Recent tumor sequencing data suggest an urgent need to develop a methodology to directly address intratumoral heterogeneity in the design of anticancer treatment regimens. We use RNA interference to model heterogeneous tumors, and demonstrate successful validation of computational predictions for how optimized drug combinations can yield superior effects on these tumors both in vitro and in vivo. Importantly, we discover here that for many such tumors knowledge of the predominant subpopulation is insufficient for determining the best drug combination. Surprisingly, in some cases, the optimal drug combination does not include drugs that would treat any particular subpopulation most effectively, challenging straightforward intuition. We confirm examples of such a case with survival studies in a murine preclinical lymphoma model. Altogether, our approach provides new insights about design principles for combination therapy in the context of intratumoral diversity, data that should inform the development of drug regimens superior for complex tumors.

SIGNIFICANCE: This study provides the first example of how combination drug regimens, using existing chemotherapies, can be rationally designed to maximize tumor cell death, while minimizing the outgrowth of clonal subpopulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app