Add like
Add dislike
Add to saved papers

Influence of continuous or intermittent blood flow restriction on muscle activation during low-intensity multiple sets of resistance exercise.

Low-intensity resistance exercise with blood flow restriction (BFR) has been shown to induce a prominent increase in muscle activation in response to muscle fatigue. However, the magnitude of muscle fatigue between continuous (Con-BFR) and intermittent BFR (Int-BFR, BFR only during exercise) is currently unknown. We examined the effect of Con-BFR or Int-BFR on muscle activation during exercise. Unilateral arm curl exercise (20% of one-repetition maximum, four sets, 30 sec rest period between sets) was performed without (CON) or with Con-BFR or Int-BFR. During BFR conditions, the cuff was inflated to 160 mmHg on the proximal region of testing arm. Surface electromyography (EMG) was recorded from the biceps brachii muscle, and integrated EMG (iEMG) was analyzed. During the exercise, iEMG increased progressively in Con-BFR and Int-BFR and both conditions were greater (p < 0.05) than CON at the 3rd and 4th set. However, there were no differences (p > 0.05) in iEMG between Con-BFR and Int-BFR during exercise (∼2.45 and ∼2.40 times, respectively). Thus, the magnitude of increase in muscle activation may be similar between Con-BFR and Int-BFR when BFR exercise was performed at a high level of cuff pressure intensity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app