Add like
Add dislike
Add to saved papers

Comparing no-flow time during endotracheal intubation versus placement of a laryngeal mask airway during a simulated cardiac arrest scenario.

INTRODUCTION: Traditionally, pausing chest compressions during airway management in a cardiac arrest has been the accepted norm. However, updated American Heart Association and the European Resuscitation Council guidelines for Advanced Cardiac Life Support emphasize reducing pauses in chest compressions, often referred to as "no-flow time," to improve return of spontaneous circulation. We used simulation to evaluate whether placing a laryngeal mask airway versus endotracheal intubation via direct laryngoscopy would reduce no-flow times during a simulated cardiac arrest.

METHODS: A crossover trial of 41 respiratory therapists (RTs) performed airway management in a simulated cardiac arrest. The RTs were told that bag mask ventilation was inadequate, and either an endotracheal tube or laryngeal mask airway was needed. They were informed to request the cessation of chest compressions only if needed to complete the airway maneuver. The study was terminated when ventilation was achieved. The scenario was repeated with the same RT placing the alternative airway. Insertion time and no-flow times were recorded.

RESULTS: Neither endotracheal intubation via direct laryngoscopy nor laryngeal mask airway placement increased no-flow time. Only 1 participant requested cessation of chest compressions during direct laryngoscopy for 2.3 seconds (P = 0.175). However, ventilation was established significantly faster with a laryngeal mask airway compared with endotracheal intubation (49.2 vs. 31.6 seconds, respectively, P < 0.001).

CONCLUSIONS: We conclude that although neither device was superior to the other with respect to the primary outcome of reducing no-flow time, effective ventilation was established more rapidly with the laryngeal mask airway in the hands of the RTs who participated in this study. These results may be affected by the differences between simulated and human airways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app