Add like
Add dislike
Add to saved papers

Glucocorticoids regulate barrier function and claudin expression in intestinal epithelial cells via MKP-1.

Barrier dysfunction is pivotal to the pathogenesis of inflammatory bowel diseases (IBD) and collagenous colitis. Glucocorticoids restore barrier function in Crohn's disease, but whether this reflects attenuated inflammation or an epithelial-specific action has not yet been addressed. Using filter-grown Caco-2 monolayers as an in vitro model of the intestinal epithelial barrier, we observed that glucocorticoids induced a time- and dose-dependent increase in transepithelial electrical resistance (TEER) in a glucocorticoid receptor-dependent manner without altering flux of larger solutes or changing principal tight junction architecture. This was accompanied by reduced paracellular cation flux, reduced expression of the pore-forming tight junction component claudin-2, and upregulation of the sealing tight junction protein claudin-4. In contrast, expression of occludin, claudin-1, -7, or -8 was not altered. Dexamethasone increased expression and activity of MAPK phosphatase-1 and inhibition of this phosphatase prevented the glucocorticoid-induced changes in TEER and claudin expression, whereas inhibiting p38 or MEK1/2 was not sufficient to replicate the glucocorticoid effects. Upon exposure to IFN-γ, TNF-α, or IL-1β, TEERs declined in dexamethasone-treated cells but remained consistently higher than in cells not receiving glucocorticoids. Treatment with IFN/TNF resulted in an upregulation of claudin-2 that was significantly attenuated by dexamethasone, whereas increased claudin-2 expression upon IL-1β stimulation was not affected by glucocorticoids. Taken together, barrier augmentation might represent a previously unrecognized mechanism of action, potentially contributing to the therapeutic efficacy of glucocorticoids in IBD and collagenous colitis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app