JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Quantifying melanin spatial distribution using pump-probe microscopy and a 2-D morphological autocorrelation transformation for melanoma diagnosis.

Pump-probe microscopy is an emerging molecular imaging technique that probes the excited state dynamics properties of pigmented samples. This method has been particularly intriguing for melanoma because, unlike other methods available, it can provide nondestructive, quantitative chemical information regarding different types of melanins, with high spatial resolution. In this Letter, we present a method based on mathematical morphology to quantify melanin structure (eumelanin, pheomelanin, and total melanin content, uniquely available with pump-probe microscopy) to aid in melanoma diagnosis. The approach applies a two-dimensional autocorrelation function and utilizes statistical parameters of the corresponding autocorrelation images, specifically, the second moments and entropy, to parameterize image structure. Along with bulk melanin chemical information, we show that this method can differentiate invasive melanomas from noninvasive and benign lesions with high sensitivity and specificity (92.3% and 97.5%, respectively, with N=53). The mathematical method and the statistical analysis are described in detail and results from cutaneous and ocular conjunctival melanocytic lesions are presented.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app