Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

MicroRNA let-7a and let-7f as novel regulatory factors of the sika deer (Cervus nippon) IGF-1R gene.

Growth Factors 2014 Februrary
MicroRNAs and their roles in rapid antler growth and regeneration have attracted much attention. In the present study, we examined the effects of microRNAs let-7a and let-7f on antler cell proliferation. We used a luciferase reporter screen to demonstrate that insulin-like growth factor 1 receptor (IGF-1R) can be regulated by let-7a and let-7f. MTT assay confirmed that chondrocyte proliferation was inhibited by let-7a and let-7f mimics. In contrast, transfection of let-7a and let-7f inhibitors increased chondrocyte proliferation, indicating that inhibitors can competitively bind to endogenous miRNA, reducing the inhibitory effect of miRNA. Moreover, western blotting analysis further identified that let-7a and let-7f mimics suppressed IGF-1R expression, and that let-7a and let-7f inhibitors increased the expression level of IGF-1R. Taken together, our study demonstrates the important roles of let-7a and let-7f in antler proliferation and its potential application in antler development. let-7a and let-7f may represent novel regulatory factors of IGF-1R expression in deer antler.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app