Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effect of organic matter and calcium carbonate on behaviors of cadmium adsorption-desorption on/from purple paddy soils.

Chemosphere 2014 March
Batch experiments and sequential extraction analysis were employed to investigate the effects of soil organic matter and CaCO3 on the adsorption and desorption of cadmium (Cd(2+)) onto and from two purple paddy soils, an acidic purple paddy soil (APPS) and a calcareous purple paddy soil (CPPS). The Cd(2+) adsorption isotherms on both soils could be well-described by the Langmuir and Freundlich equations. CPPS had a higher capacity and a stronger affinity for Cd(2+) adsorption compared with APPS. The adsorption process of Cd(2+) on APPS was dominated by electrostatic attractions, whereas the adsorption mechanism varied depending on the Cd(2+) concentrations in equilibrium solutions on CPPS. At low equilibrium concentrations, the adsorption process was primarily specific adsorption, but nonspecific adsorption dominated at high equilibrium concentrations. Removal of organic matter decreased the amount of Cd(2+) adsorption on both of the soils, slightly affected the Cd(2+) desorption rate and exchangeable Cd (EXC-Cd) in APPS and increased the desorption rate and EXC-Cd in CPPS, suggesting that the effect of organic matter on Cd(2+) adsorption-desorption depends on the soils. CPPS and APPS containing CaCO3 exhibited higher adsorption amounts but lower desorption rates and lower proportions of EXC-Cd than those of their corresponding soils without CaCO3, demonstrating that CaCO3 played an important role in Cd(2+) specific adsorption on soil. The changes in the thermodynamic parameters, including free energy (ΔG(0)), enthalpy (ΔH(0)) and entropy (ΔS(0)), as evaluated by the Van't Hoff equations, indicated that the adsorption was a spontaneous and endothermic process with the primary interaction forces of dipole interactions and hydrogen bonds on APPS, whereas both physical and chemical interactions dominated the adsorption on CPPS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app