JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

G-protein-coupled receptor 91 and succinate are key contributors in neonatal postcerebral hypoxia-ischemia recovery.

OBJECTIVE: Prompt post-hypoxia-ischemia (HI) revascularization has been suggested to improve outcome in adults and newborn subjects. Other than hypoxia-inducible factor, sensors of metabolic demand remain largely unknown. During HI, anaerobic respiration is arrested resulting in accumulation of carbohydrate metabolic intermediates. As such succinate readily increases, exerting its biological effects via a specific receptor, G-protein-coupled receptor (GPR) 91. We postulate that succinate/GPR91 enhances post-HI vascularization and reduces infarct size in a model of newborn HI brain injury.

APPROACH AND RESULTS: The Rice-Vannucci model of neonatal HI was used. Succinate was measured by mass spectrometry, and microvascular density was evaluated by quantification of lectin-stained cryosection. Gene expression was evaluated by real-time polymerase chain reaction. Succinate levels rapidly increased in the penumbral region of brain infarcts. GPR91 was foremost localized not only in neurons but also in astrocytes. Microvascular density increased at 96 hours after injury in wild-type animals; it was diminished in GPR91-null mice leading to an increased infarct size. Stimulation with succinate led to an increase in growth factors implicated in angiogenesis only in wild-type mice. To explain the mode of action of succinate/GPR91, we investigated the role of prostaglandin E2-prostaglandin E receptor 4, previously proposed in neural angiogenesis. Succinate-induced vascular endothelial growth factor expression was abrogated by a cyclooxygenase inhibitor and a selective prostaglandin E receptor 4 antagonist. This antagonist also abolished succinate-induced neovascularization.

CONCLUSIONS: We uncover a dominant metabolic sensor responsible for post-HI neurovascular adaptation, notably succinate/GPR91, acting via prostaglandin E2-prostaglandin E receptor 4 to govern expression of major angiogenic factors. We propose that pharmacological intervention targeting GPR91 could improve post-HI brain recovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app