Journal Article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Repeated sprint training in normobaric hypoxia.

Repeated sprint ability (RSA) is a critical success factor for intermittent sport performance. Repeated sprint training has been shown to improve RSA, we hypothesised that hypoxia would augment these training adaptations. Thirty male well-trained academy rugby union and rugby league players (18.4 ± 1.5 years, 1.83 ± 0.07 m, 88.1 ± 8.9 kg) participated in this single-blind repeated sprint training study. Participants completed 12 sessions of repeated sprint training (10 × 6 s, 30 s recovery) over 4 weeks in either hypoxia (13% FiO₂) or normoxia (21% FiO₂). Pretraining and post-training, participants completed sports specific endurance and sprint field tests and a 10 × 6 s RSA test on a non-motorised treadmill while measuring speed, heart rate, capillary blood lactate, muscle and cerebral deoxygenation and respiratory measures. Yo-Yo Intermittent Recovery Level 1 test performance improved after RS training in both groups, but gains were significantly greater in the hypoxic (33 ± 12%) than the normoxic group (14 ± 10%, p<0.05). During the 10 × 6 s RS test there was a tendency for greater increases in oxygen consumption in the hypoxic group (hypoxic 6.9 ± 9%, normoxic (-0.3 ± 8.8%, p=0.06) and reductions in cerebral deoxygenation (% changes for both groups, p=0.09) after hypoxic than normoxic training. Twelve RS training sessions in hypoxia resulted in twofold greater improvements in capacity to perform repeated aerobic high intensity workout than an equivalent normoxic training. Performance gains are evident in the short term (4 weeks), a period similar to a preseason training block.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app