Add like
Add dislike
Add to saved papers

The genetic architecture of zinc and iron content in maize grains as revealed by QTL mapping and meta-analysis.

Breeding Science 2013 September
Micronutrient malnutrition, especially zinc (Zn) and iron (Fe) deficiency in diets, has aroused worldwide attention. Biofortification of food crops has been considered as a promising approach for alleviating this deficiency. Quantitative trait locus (QTL) analysis was performed to dissect the genetic mechanism of Zn and Fe content in maize grains using a total of 218 F2:3 families derived from a cross between inbred lines 178 and P53. Meta-analysis was used to integrate genetic maps and detect Meta-QTL (MQTL) across several independent QTL researches for traits related to Zn or Fe content. Five significant QTLs and 10 MQTLs were detected. Two informative genomic regions, bins 2.07 and 2.08, showed a great importance for Zn and Fe content QTLs. The correlation between Zn and Fe level in maize grains was proposed by MQTLs as 8 of the 10 involved both traits. The results of this study suggest that QTL mapping and meta-analysis is an effective approach to understand the genetic basis of Zn and Fe accumulation in maize grains.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app