Add like
Add dislike
Add to saved papers

Solanum trilobatum extract-mediated synthesis of titanium dioxide nanoparticles to control Pediculus humanus capitis, Hyalomma anatolicum anatolicum and Anopheles subpictus.

Parasitology Research 2014 Februrary
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in paints, printing ink, rubber, paper, cosmetics, sunscreens, car materials, cleaning air products, industrial photocatalytic processes, and decomposing organic matters in wastewater due to their unique physical, chemical, and biological properties. The present study was conducted to assess the antiparasitic efficacies of synthesized TiO2 NPs utilizing leaf aqueous extract of Solanum trilobatum against the adult head louse, Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae); larvae of cattle tick Hyalomma anatolicum (a.) anatolicum Koch (Acari: Ixodidae), and fourth instar larvae of malaria vector Anopheles subpictus Grassi (Diptera: Culicidae). The green synthesized TiO2 NPs were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy analysis (EDX), and Atomic force microscopy (AFM). XRD analysis of synthesized TiO2 NPs revealed that the particles were in the form of nanocrystals as evidenced by the major peaks at 2θ values of 27.52°, 36.21°, and 54.43° identified as 110, 101, and 211 reflections, respectively. FTIR spectra exhibited a prominent peak at 3,466 cm(-1) and showed OH stretching due to the alcoholic group, and the OH group may act as a capping agent. SEM images displayed NPs that were spherical, oval in shape, individual, and some in aggregates with an average size of 70 nm. Characterization of the synthesized TiO2 NPs using AFM offered a three-dimensional visualization and uneven surface morphology. The pediculocidal and acaricidal activities of synthesized TiO2 NPs showed the percent mortality of 31, 42, 63, 82, 100; 36, 44, 67, 89, and 100 at 2, 4, 6, 8, and 10 mg/L, respectively, against P. h. capitis and H. a. anatolicum. The average larval percent mortality of synthesized TiO2 NPs was 38, 47, 66, 79, and 100 at 1, 2, 3, 4, and 5 mg/L, respectively, against A. subpictus. The maximum activity was observed in the aqueous leaf extract of S. trilobatum, TiO(OH)2 solutions (bulk), and synthesized TiO2 NPs with LC50 values of 35.14, 25.85, and 4.34 mg/L; 47.15, 29.78, and 4.11 mg/L; and 28.80, 24.01, and 1.94 mg/L, and r (2) values of 0.982, 0.991, and 0.992; 0.947, 0.987, and 0.997; and 0.965, 0.998 and 0.985, respectively, against P. h. capitis, H. a. anatolicum, and A. subpictus. This study provides the first report on the pediculocidal, acaricidal, and larvicidal activity of synthesized TiO2 NPs. This is an ideal eco-friendly, novel, low-cost, and simple approach to satisfy the requirement of large-scale industrial production bearing the advantage for the control of P. h. capitis, H. a. anatolicum, and A. subpictus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app