Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The differential response to Fgf signalling in cells internalized at different times influences lineage segregation in preimplantation mouse embryos.

Open Biology 2013 November 21
Lineage specification in the preimplantation mouse embryo is a regulative process. Thus, it has been difficult to ascertain whether segregation of the inner-cell-mass (ICM) into precursors of the pluripotent epiblast (EPI) and the differentiating primitive endoderm (PE) is random or influenced by developmental history. Here, our results lead to a unifying model for cell fate specification in which the time of internalization and the relative contribution of ICM cells generated by two waves of asymmetric divisions influence cell fate. We show that cells generated in the second wave express higher levels of Fgfr2 than those generated in the first, leading to ICM cells with varying Fgfr2 expression. To test whether such heterogeneity is enough to bias cell fate, we upregulate Fgfr2 and show it directs cells towards PE. Our results suggest that the strength of this bias is influenced by the number of cells generated in the first wave and, mostly likely, by the level of Fgf signalling in the ICM. Differences in the developmental potential of eight-cell- and 16-cell-stage outside blastomeres placed in the inside of chimaeric embryos further support this conclusion. These results unite previous findings demonstrating the importance of developmental history and Fgf signalling in determining cell fate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app