Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Reviewing the ketamine model for schizophrenia.

The observation that antagonists of the N-methyl-D-aspartate receptor (NMDAR), such as phencyclidine (PCP) and ketamine, transiently induce symptoms of acute schizophrenia had led to a paradigm shift from dopaminergic to glutamatergic dysfunction in pharmacological models of schizophrenia. The glutamate hypothesis can explain negative and cognitive symptoms of schizophrenia better than the dopamine hypothesis, and has the potential to explain dopamine dysfunction itself. The pharmacological and psychomimetic effects of ketamine, which is safer for human subjects than phencyclidine, are herein reviewed. Ketamine binds to a variety of receptors, but principally acts at the NMDAR, and convergent genetic and molecular evidence point to NMDAR hypofunction in schizophrenia. Furthermore, NMDAR hypofunction can explain connectional and oscillatory abnormalities in schizophrenia in terms of both weakened excitation of inhibitory γ-aminobutyric acidergic (GABAergic) interneurons that synchronize cortical networks and disinhibition of principal cells. Individuals with prenatal NMDAR aberrations might experience the onset of schizophrenia towards the completion of synaptic pruning in adolescence, when network connectivity drops below a critical value. We conclude that ketamine challenge is useful for studying the positive, negative, and cognitive symptoms, dopaminergic and GABAergic dysfunction, age of onset, functional dysconnectivity, and abnormal cortical oscillations observed in acute schizophrenia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app