JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Electron microscopy studies of Type III CRISPR machines in Sulfolobus solfataricus.

The CRISPR (clustered regularly interspaced short palindromic repeats) system is an adaptive immune system that targets viruses and other mobile genetic elements in bacteria and archaea. Cells store information of past infections in their genome in repeat-spacer arrays. After transcription, these arrays are processed into unit-length crRNA (CRISPR RNA) that is loaded into effector complexes encoded by Cas (CRISPR-associated) genes. CRISPR-Cas complexes target invading nucleic acid for degradation. CRISPR effector complexes have been classified into three main types (I-III). Type III effector complexes share the Cas10 subunit. In the present paper, we discuss the structures of the two Type III effector complexes from Sulfolobus solfataricus, SsoCSM (subtype III-A) and SsoCMR (subtype III-B), obtained by electron microscopy and single particle analysis. We also compare these structures with Cascade (CRISPR-associated complex for antiviral defence) and with the RecA nucleoprotein.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app