Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Bicyclol upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia.

UNLABELLED: Oxidative damage plays a detrimental role in the pathophysiology of cerebral ischemia and may represent a therapeutic target. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) controls the coordinated expression of the important antioxidant and detoxification genes through a promotor sequence termed the antioxidant response element. Bicyclol has been proved to elicit a variety of biological effects through its antioxidant and anti-inflammatory properties. But the underlying mechanisms are poorly understood. In this study, the role of bicyclol in cerebral ischemia and its potential mechanism were investigated.

METHODS: Male Sprague-Dawley rats were randomly assigned to five groups: MCAO (middle cerebral artery occlusion), Vehicle (MCAO+0.5% sodium carboxymethylcellulose), By-L (Vehicle+bicyclol 50mg/kg), By-H (Vehicle+bicyclol 100mg/kg) and Sham operated groups. Bicyclol was administered intragastrically once a day for 3 consecutive days; after 1h of bicyclol pretreatment on the third day, rat ischemic stroke was induced by MCAO. Neurological deficit, infarct volume, and brain edema were detected at 24h after stroke. Western blot and RT-qPCR were used to measure the expression of Nrf2, HO-1 and SOD1. MDA was detected by the spectrophotometer.

RESULTS: Compared with MCAO group, By-H group significantly ameliorated neurological deficit, lessened the infarct volume and brain edema, increased the expression of Nrf2, HO-1 and SOD1 (P<0.05), and decreased the content of MDA (P<0.05).

CONCLUSIONS: Bicyclol protected the rat brain from ischemic damage caused by MCAO, and this effect may be through the upregulation of the transcription factor Nrf2 expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app