IN VITRO
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

MicroRNA-let-7a promotes E2F-mediated cell proliferation and NFκB activation in vitro.

Epigenetic factors, including altered microRNA (miRNA) expression, may contribute to aberrant immune cell function in systemic lupus erythematosus (SLE). MiRNA-let-7a (let-7a) has been shown to directly alter cell cycle progression and proinflammatory cytokine production. Due to the crucial role of let-7a in cell division and inflammation, we investigated let-7a-mediated proliferation and NFκB translocation in J774A.1 macrophages and MES 13 mesangial cells in vitro. In immune-stimulated cells transfected with let-7a, cell proliferation was significantly increased over time. There was a significant increase in the number of immune-stimulated cells in S and G2 phases. Immune-stimulated cells overexpressing let-7a had increased nuclear translocation of NFκB. Bioinformatical analysis revealed that the E2F family, critical regulators of the G1-S transition, has potential binding sites for let-7a in their mRNA transcripts. Let-7a overexpression significantly increased the expression of the cell cycle activator E2F2 and increased retinoblastoma protein (Rb) phosphorylation in immune-stimulated cells. The cell cycle inhibitor E2F5 was significantly decreased in let-7a-transfected cells that were immune-stimulated. Bioinformatical analysis revealed E2F2 and NFκB are transcription factors predicted to regulate the let-7a promoter. We analyzed transcriptional regulation of let-7a by real-time RT-PCR using chromatin immunoprecipitation with E2F2 and NFκB antibodies. There was an increase in E2F2 and NFκB binding in DNA enriched for the let-7a promoter in immune-stimulated cells. Silencing E2F2 or NFκB significantly decreased let-7a expression and IL-6 production in immune-stimulated cells. Taken together, our results suggest that overexpression of let-7a may contribute to hyperplasia and the proinflammatory response in SLE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app