Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Chitosan-g-TPGS nanoparticles for anticancer drug delivery and overcoming multidrug resistance.

To overcome the P-glycoprotein (P-gp)-induced multidrug resistance (MDR) of cancer cells, a novel copolymer, chitosan-graft-D-α-tocopheryl polyethylene glycol 1000 (TPGS) (CT) was synthesized for doxorubicin (DOX) delivery by the P-gp inhibiting virtue of TPGS. DOX-loaded CT nanoparticles (NPs) were fabricated by a modified solvent extraction/evaporation method combined with ionic cross-linking to form a uniform particle size of 140-180 nm with ∼40% DOX loading efficiency. These drug-loaded CT NPs demonstrated a pH-responsive release behavior, and DOX was released more quickly under low pH values. Significant cell cytotoxicity was observed on the human hepatocarcinoma cells (HepG2 and BEL-7402) and human breast adenocarcinoma cells (MCF-7). The cell cytotoxicity and apoptosis of drug-resistant cells (MCF-7/DOX and BEL-7402/5-Fu), was greatly enhanced as compared to Adriamycin. The IC50 value showed that DOX-loaded CT NPs could be 1.5-199-fold more effective than Adriamycin. This can be attributed to the P-gp blocking and down-regulation of ATP levels by the CT NPs. The potential of these NPs to act as an oral delivery system was also investigated. Both the pharmacokinetic properties and in vivo antitumor activity of DOX-loaded CT NPs were improved compared with Adriamycin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app