JOURNAL ARTICLE

Chitosan-g-TPGS nanoparticles for anticancer drug delivery and overcoming multidrug resistance

Yuanyuan Guo, Min Chu, Songwei Tan, Shuang Zhao, Hanxiao Liu, Ben Oketch Otieno, Xiangliang Yang, Chuanrui Xu, Zhiping Zhang
Molecular Pharmaceutics 2014 January 6, 11 (1): 59-70
24229050
To overcome the P-glycoprotein (P-gp)-induced multidrug resistance (MDR) of cancer cells, a novel copolymer, chitosan-graft-D-α-tocopheryl polyethylene glycol 1000 (TPGS) (CT) was synthesized for doxorubicin (DOX) delivery by the P-gp inhibiting virtue of TPGS. DOX-loaded CT nanoparticles (NPs) were fabricated by a modified solvent extraction/evaporation method combined with ionic cross-linking to form a uniform particle size of 140-180 nm with ∼40% DOX loading efficiency. These drug-loaded CT NPs demonstrated a pH-responsive release behavior, and DOX was released more quickly under low pH values. Significant cell cytotoxicity was observed on the human hepatocarcinoma cells (HepG2 and BEL-7402) and human breast adenocarcinoma cells (MCF-7). The cell cytotoxicity and apoptosis of drug-resistant cells (MCF-7/DOX and BEL-7402/5-Fu), was greatly enhanced as compared to Adriamycin. The IC50 value showed that DOX-loaded CT NPs could be 1.5-199-fold more effective than Adriamycin. This can be attributed to the P-gp blocking and down-regulation of ATP levels by the CT NPs. The potential of these NPs to act as an oral delivery system was also investigated. Both the pharmacokinetic properties and in vivo antitumor activity of DOX-loaded CT NPs were improved compared with Adriamycin.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
24229050
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"