JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Sustainable energy recovery in wastewater treatment by microbial fuel cells: stable power generation with nitrogen-doped graphene cathode.

Microbial fuel cells (MFCs) recover energy sustainably in wastewater treatment. Performance of non-noble cathode catalysts with low cost in neutral medium is vital for stable power generation. Nitrogen-doped graphene (NG) as cathode catalyst was observed to exhibit high and durable activity at buffered pH 7.0 during electrochemical measurements and in MFCs with respect to Pt/C counterpart. Electrochemical measurements showed that the oxygen reduction reaction (ORR) on NG possessed sustained activity close to the state-of-art Pt/C in terms of onset potential and electron transfer number. NG-MFCs displayed maximum voltage output of 650 mV and maximum power density of 776 ± 12 mW m(-2), larger than 610 mV and 750 ± 19 mW m(-2) of Pt/C-MFCs, respectively. Furthermore, long-time test lasted over 90 days, during which the maximum power density of NG-MFCs declined by 7.6%, with stability comparable to Pt/C-MFCs. Structure characterization of NG implied that the relatively concentrated acidic oxygen-containing groups improved such long-time stability by repelling the protons due to the same electrostatic force, and thus the C-N active centers for ORR were left undestroyed. These findings demonstrated the competitive advantage of NG to advance the application of MFCs for recovering biomass energy in treatment of wastewater with neutral pH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app